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HPC-AIl Synergies

* Al-for-HCP: Smart Infrastructure and resource management
* HPC-for-Al: Accelerating Al with HPC
* Al-for-Science: integration of numerical simulation and ML

Journées Convergence HPC-AI-Big Data, Nov 2019.

Slides from talks available at https://project.inria.fr/conv2019/
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HPC versus BigData and ML

Parallelism for scalability

Big Data and (shallow) ML

Ease of programming comes first

High level programming (Spark, Flink)
Thick software stack

Quickly changing software libs.

Tools developed by large communities
Target Cloud platforms

Jobs run a few days on tens of nodes:
* Spark deployed on 8000 nodes to process

PBytes scale data
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Artificial Neural Networks
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Parameter space

Backpropagation: weight optimization by stochastic Gradient descent



ResNet-34

34-layer residual
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Deep Learning

Today’s neural networks are deep and complex:

—————————— T Ty T

\ feature maps featur Ps
Network zoology: \ ot featiSimaps  featis ,,,,”"‘m—”‘“* W

2x32 __28x28 4x14 N\ a2 L\ N

- MLP \ VO B
- CNN N .
- Graph-CNN \ oo\
- LSTM VT N\
- Attention NN o comol __ supamping,

Megatron-LM [Shoeybi-19]:
- Architecture:
72-layer, 8.3 billion parameters
- Training:
174GB of text, 12 ZettaFLOPs, 9.2 days, 512 GPUs
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The ResNet-50 Race

Table 1 : Training time and top-1 1-crop validation accuracy with ImageNet/ResNet-50

Batch Size Processor DL Library Time Accuracy
He et al. [7] 256 Tesla P100 x8 Caffe 29 hours 75.3%
Goyal et al. [1] 8K Tesla P100 x256 Cafte2 1 hour 76.3%
Smith et al. [4] 8K—16K full TPU Pod TensorFlow 30 mins 76.1%
Akiba et al. [5] 32K Tesla P100 x1024 Chainer 15 mins 74.9%
Jia et al. [6] 64K Tesla P40 x2048 TensorFlow 6.6 mins 75.8%
2018 Mikami et al. 34K—68K Tesla V100 x2176 NNL 224 secs  75.03%

A 28 000 x perf improvement in 3 years!



Parallelizing Deep Learning

Parameter update function

v

Generic learning process: Wt= F(D,Wt1)
Learning Data

Model Parameters

Parameters updates are computed after presenting a batch of
examples (batch learning)

2 main sources of parallelism:

— Data parallelism: distribute the learning set

— Model parallelism: distribute the model parameters
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[Goyal 2017]

Data Parallelism

Duplicate the model (one per worker)
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ImageNet top-1 validation error
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Partition the batch into P mini-batches, one per worker

Synchronous update (TensorFlow):

Loop:
Server sends parameters to all Workers;
Workers compute parameter updates

on their mini-batch;

Server get updates from all Workers;
Server compute a global model update;
Server update parameters;

EndLoop

Compute the

mean of the W, Limitations:

- Server is a bottleneck:

gets P sets of model parameters
- Scaling the batch size affects the
learning convergence




Data Parallelism

Fix the bottleneck: suppress the server and perform a all-reduce
collective communication

All-Reduce (model weights)

Communication cost per worker is now asymptotically independent
on the number of workers

T(n) =2alog(p) +2n/B(p-1)/p+g.n.(p-1)p

Strategy available using Horovod+Tensorflow (MPI based)



Data Parallelism

But scaling the batch size also requires adapted learning rate
management to ensure a proper training convergence.

state-of-the-art
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You et al, SC 2019



Model Parallelism

Data parallelism limitation: not adapted if the
neural network does not fit into memory

Model parallelism: Internal NN parallelization

— Difficult to acheive (tight data dependencies betwen
neurons)

— 2 main approaches today:
e Layer-wise pipe-lining (ex: Gpipe — Huang et al. 2018)

 Distributed tensor computation (Mesh-TensorFlow — Shazeer
et al. —2018)

Data and Model parallelism can be combined (Megatron - 2019)
https://arxiv.org/abs/1909.08053
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Learning From Simulations: Deep Fluid

Simulation Output

Train a neural network to reproduce the CFD
simulation output from simulation data
(varying the simulation input parameters)

Control on Fluids

Po 2 P12 P2 >
Integration on latent-space

Neural architecture:
Auto-encoder + Physics-inspired Loss

Cop > € > Cy >

Reconstruction

ey = e, > U, >

Pe+1 — Pe = Ap:

Kim et al. Eurographics 2019 https://arxiv.org/abs/1806.02071
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Neural Surrogates for Massive
Parametric Space Exploration

Taking benefit of the generalization capabilities

of NN: Blologlcal system
. . . 5 .

1) Use classical simulation to generate 10

simulation results from random O

combinations of parameter values. a0 )

2 months on a 400 node cluster Mechansmtased o
|

2) NN training from simulation data (LSTM ?’a_t_m“z KX+ (X X0 X,)

arCh) i Small-scale predictions

. . low but bl

3) Use NN to screen 108 combinations of TR

pa rameter values Large-scale predictions! ~ 1raining & test data

slow or impossible l Training & validation

Neural network

12 days — instead of 986 year with standard

simulation (NN 30 000x faster) : Predictions

Dynamlcs fast

-> Found novel patterns
NN 30000x faster than sim.

Wang et al. 2019, Nature Communication



Physics-Inspired Neural Networks

2D Navier-Stokes equations:

Ur + A1 (UUy + Viy) = —px + A2 (Uxx + Uyy),
Ve +A1(UVy +VVy) = —py + A (Vax + Vyy),

u,v: velocity fields
p: pressure

Neural network with loss function
Enforcing physics constraints:

Classical loss
N

1 i Y 2 O A N
MSE.:NZOu(t,x,y)—uI + vt x,y)—v

i=1

Learn pressure field, Delta 1 and Delta 2

/ Training domain
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Raissi et al, JoCP 2018



Differentiable Programming

(a) Forward pass

\/

(b) Backward pass

Automatic differentiation:

— Initially developed to produce adjoint code
automatically

— Generalized backpropagation algorithm

— Supported by standard libs like PyTorch and
TensorFlow.

From (static) neural network programming to
differential programming (dynamic deep
architectures).

Myia language

I =x
lnt1 =4l (1 = 1)

flz) =1y = 64z(1 —2)(1 - 22)3(1 — 8z +822)?

Manual
Differentiation

f(x):
V=X
fori=1to3
v =4xux(1-v)
return v

or, in closed-form,

f(x):
return 64%x* (1-x)* ((1-2%x) ~2)

* (1-8*x+8xx*x) "2

»

f(z) = 1282(1 — z)(—8 + 162)(1 — 2z)2(1 —
8z +87%) +64(1 —z)(1 —2z)3(1 — 8z +82%)2 —
64z(1 — 22)%(1 — 8z + 822)? — 2562(1 — ) (1 —
22)(1 — 8z + 8z2)?

Symbolic
Differentiation

Automatic
Differentiation

Numerical
Differentiation

£2(x):
(v,dv) = (x,1)
fori=1to3
(v,dv) = (4xv*(1-v), 4*dv-8*v*dv)
return (v,dv)

£ (x0) = f'(0)
Exact

of the Closed-form

£2(x):

return 128*x* (1 - x)* (-8 + 16*x)
*((1 - 2%x) "2) % (1 - 8%x + 8*x*x)
+64%(1 - x)*((1 - 2%x)"2)*x((1
= 8xx + 8*x*x)"2) - (64*x*(1 -
2%x) "2)* (1 - 8%x + 8xx*x) "2 -
256xx* (1 - x)*(1 - 2*x) *(1 - 8%x
+ 8%x*x) "2

£2 (x0) = f'(x0)
Exact

£2(x):
h =0.000001
return (f(x+h) - £(x)) /h

£ (x0) = f'(x0)
Approximate

Baydin et al. 2018

Memory, automatic differentiation and checkpointing:

—  Store versus recompute intermediate states required for
the backward pass
—  Use checkpointing approaches to control the amount of
memory required

Beaumont et al, 2019, PTRSA.




Deep Reinforcement Learning

Actor-Critic Schematic Architecture

Game Simulr + DNN

(SIS’IapiIr): ~

- S &S states ™\,

- Pi: Policy (S,S%apuh,_ Periodifally

- a,: action taken R update|NN

according to policy Pi. ) S | weight$
- r:reward Vs ™
Learner
(Deep Neural Network)
o /

Some recent strategies for DRL: A3C, Impala AlphaGo Zero: trained during more than 70
Framework for DRL: Ray Lib hours using 64 GPU workers and 19 CPU

parameter servers [D. Silver, Nature 2017]



Auto Deep Learning

Hyperparameters:

* Every other NN architecture parameter not computed by the backpropagation
* Today hyperparam. setting is mainly expert based
e AutoML: towards automatic hyperparameter setting

AutoML main approaches:

* Reinforcement Learning
* Genetic algorithms

See the RayTune lib for instance

And of course very compute intensive embarrassingly parallel
workload (and people start to question carbon impact)

https://autodl.chalearn.org/
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Conclusion

 HPC-for-Al:
— Massive parallelism not yet common (but quickly changing domain). Day
long trainings are commons. Design/test/share/reproduce (MLFlow)
— Accelerators needed - GPUs (gammer cards do the job), TPUs....

— Complexity is growing (NN architectures as well as NN assemblies like GAN,
DRL).

— AutoML (with transfert learning): towards ML factories ?

e Al-for-Science: a way to bring closer data and simulation

— Massive data analytics

— Integration of observation data into numerical simulations (data
assimilation)

— Physics-Inspired NN: ODE/PDE integration with NN + automatic
differentiation



Reference Books

A classic about deep learning:

Deep Neural Networks, lan Goodfellow and
Yoshua Bengio and Aaron Courville

A classical about machine learning:

Pattern Recognition and Machine Learning,
Christopher Bishop



