
Deep Learning and High Performance
Computing Synergies

Bruno Raffin,
DataMove
INRIA, Univ. Grenoble Alpes JIRC, Bourges, Fev 2020

Bruno.raffin@inria.fr

HPC-AI Synergies

•AI-for-HCP: Smart Infrastructure and resource management
•HPC-for-AI: Accelerating AI with HPC
•AI-for-Science: integration of numerical simulation and ML

Journées Convergence HPC-AI-Big Data, Nov 2019.
Slides from talks available at https://project.inria.fr/conv2019/

https://project.inria.fr/conv2019/

HPC versus BigData and ML

HPC

Performance comes first
Low level programming (MPI, OpenMP)
Thin software stack
Stable software libs
Tools developed by small communities
Target HPC centers

Jobs run a few hours on thousands of cores:
– Gysela (fusion):

• 1 run = 10 M hours CPU
• Scalable up to 0,5 M cores

Big Data and (shallow) ML

Ease of programming comes first
High level programming (Spark, Flink)
Thick software stack
Quickly changing software libs.
Tools developed by large communities
Target Cloud platforms

Jobs run a few days on tens of nodes:
• Spark deployed on 8000 nodes to process

PBytes scale data

Parallelism for scalability

HPC versus BigData and ML

HPC

Performance comes first
Low level programming (MPI, OpenMP)
Thin software stack
Stable software libs
Tools developed by small communities
Target HPC centers

Jobs run a few hours on thousands of cores:
– Gysela (fusion):

• 1 run = 10 M hours CPU
• Scalable up to 0,5 M cores

Big Data and (shallow) ML

Ease of programming comes first
High level programming (Spark, Flink)
Thick software stack
Quickly changing software libs.
Tools developed by large communities
Target Cloud platforms

Jobs run a few days on tens of nodes:
• Spark deployed on 8000 nodes to process

PBytes scale data

Parallelism for scalability

Deep Learning

High level programming
environments supported by a

large community
(Tensorflow, PyTorch)

AlphaGo Zero training: 70 hours
on 64 GPU workers and 19 CPU

servers [Silver’17]

Artificial Neural Networks

Backpropagation: weight optimization by stochastic Gradient descent

Example xi Output: yi

Error E(yi, y’i)
(loss function)

Backpropagate error and
compute weight updates

Usually examples are
processed by batches

Activation function

Parameter
update
(weighted by
learning rate)

wt

wt+1

Error

Parameter space

Deep Learning

Today’s neural networks are deep and complex:

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

ResNet-34

Network zoology:

- MLP

- CNN

- Graph-CNN

- LSTM

- Attention NN

- ……

Megatron-LM [Shoeybi-19]:

- Architecture:

72-layer, 8.3 billion parameters

- Training:

174GB of text, 12 ZettaFLOPs, 9.2 days, 512 GPUs

The ResNet-50 Race

Table 1 : Training time and top-1 1-crop validation accuracy with ImageNet/ResNet-50
 Batch Size Processor DL Library Time Accuracy
He et al. [7] 256 Tesla P100 x8 Caffe 29 hours 75.3%
Goyal et al. [1] 8K Tesla P100 x256 Caffe2 1 hour 76.3%
Smith et al. [4] 8K→16K full TPU Pod TensorFlow 30 mins 76.1%
Akiba et al. [5] 32K Tesla P100 x1024 Chainer 15 mins 74.9%
Jia et al. [6] 64K Tesla P40 x2048 TensorFlow 6.6 mins 75.8%
This work 34K→68K Tesla V100 x2176 NNL 224 secs 75.03%

Table 2 : GPU scaling efficiency with ImageNet/ResNet-50 training

 Processor Interconnect GPU scaling efficiency
Goyal et al. [1] Tesla P100 x256 50Gbit Ethernet ∼90%
Akiba et al. [5] Tesla P100 x1024 Infiniband FDR 80%
Jia et al. [6] Tesla P40 x2048 100Gbit Ethernet 87.9%
This work Tesla V100 x1088 Infiniband EDR x2 91.62%

2 Approach
There are two primary issues with large-scale distributed training: instability of large
mini-batch training and the synchronization communication overhead.

It is well-known that training with large mini-batch is unstable and creates generalization gap
[1] [2] [8]. In up to 32K mini-batch training on ImageNet/ResNet-50, this instability was
alleviated by several groups [1] [5] [9]. Besides this, [6] has achieved training with 64K
mini-batch.

A data parallel distributed training requires an extra step between every training iteration to
synchronize and average gradients across participating GPUs. This step is implemented using
an all-reduce collective operation. On a large-scale GPU cluster, the overhead of the
all-reduce collective operation makes it extremely challenging to achieve linear scaling [5]
[6].

These two issues are addressed in this work. We adopt batch size control technique
introduced in [4], [10], and [11] to address large mini-batch instability. We develop 2D-Torus
all-reducing scheme to efficiently exchange gradients across GPUs.

2 .1 B a t ch S ize Co ntro l

According to the previous efforts, gradually increasing total mini-batch size during the
training reduces the instability of the large mini-batch training. Intuitively, increasing the
batch size as the loss landscape of the training becomes "flatter" helps evading the local
minima [4] [10] [11]. In this work, batch-size control is adopted to reduce accuracy
degradation with mini-batch size exceeding 32K. A predetermined batch-size change
scheduling is employed during the training.

2 .2 2 D-To rus A l l - red uce

An efficient communication topology is vital for reducing communication overhead of a
collective operation. Several communication topologies including Ring all-reduce [12] and
hierarchical Ring all-reduce [6] are proposed to improve the efficiency of the all-reduce
operation in the previous efforts.

Ring all-reduce algorithm cannot fully utilize the bandwidth of an extremely large-scale
cluster with over thousand GPUs. This is because the communication overhead of the

Mikami et al.

2016
2017
2017
2017
2018
2018

A 28 000 x perf improvement in 3 years!

Parallelizing Deep Learning

Generic learning process: Wt = F(D,Wt-1)

Parameters updates are computed after presenting a batch of
examples (batch learning)

2 main sources of parallelism:
– Data parallelism: distribute the learning set
– Model parallelism: distribute the model parameters

Parameter update function

Learning Data
Model Parameters

Data Parallelism
Duplicate the model (one per worker)
Partition the batch into P mini-batches, one per worker

Server

Worker

Worker

Worker

Worker

Synchronous update (TensorFlow):

Loop:
Server sends parameters to all Workers;
Workers compute parameter updates

on their mini-batch;
Server get updates from all Workers;
Server compute a global model update;
Server update parameters;

EndLoop

Limitations:
- Server is a bottleneck:

gets P sets of model parameters
- Scaling the batch size affects the
learning convergence

Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour

Priya Goyal Piotr Dollár Ross Girshick Pieter Noordhuis
Lukasz Wesolowski Aapo Kyrola Andrew Tulloch Yangqing Jia Kaiming He

Facebook

Abstract

Deep learning thrives with large neural networks and

large datasets. However, larger networks and larger

datasets result in longer training times that impede re-

search and development progress. Distributed synchronous

SGD offers a potential solution to this problem by dividing

SGD minibatches over a pool of parallel workers. Yet to

make this scheme efficient, the per-worker workload must

be large, which implies nontrivial growth in the SGD mini-

batch size. In this paper, we empirically show that on the

ImageNet dataset large minibatches cause optimization dif-

ficulties, but when these are addressed the trained networks

exhibit good generalization. Specifically, we show no loss

of accuracy when training with large minibatch sizes up to

8192 images. To achieve this result, we adopt a linear scal-

ing rule for adjusting learning rates as a function of mini-

batch size and develop a new warmup scheme that over-

comes optimization challenges early in training. With these

simple techniques, our Caffe2-based system trains ResNet-

50 with a minibatch size of 8192 on 256 GPUs in one hour,

while matching small minibatch accuracy. Using commod-

ity hardware, our implementation achieves ⇠90% scaling

efficiency when moving from 8 to 256 GPUs. This system

enables us to train visual recognition models on internet-

scale data with high efficiency.

1. Introduction

Scale matters. We are in an unprecedented era in AI
research history in which the increasing data and model
scale is rapidly improving accuracy in computer vision
[22, 40, 33, 34, 35, 16], speech [17, 39], and natural lan-
guage processing [7, 37]. Take the profound impact in com-
puter vision as an example: visual representations learned
by deep convolutional neural networks [23, 22] show excel-
lent performance on previously challenging tasks like Im-
ageNet classification [32] and can be transferred to diffi-
cult perception problems such as object detection and seg-

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a
g
e
N

e
t
to

p
-1

 v
a
lid

a
tio

n
 e

rr
o
r

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-

ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ⇠90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

mentation [8, 10, 27]. Moreover, this pattern generalizes:
larger datasets and network architectures consistently yield
improved accuracy across all tasks that benefit from pre-
training [22, 40, 33, 34, 35, 16]. But as model and data
scale grow, so does training time; discovering the poten-
tial and limits of scaling deep learning requires developing
novel techniques to keep training time manageable.

The goal of this report is to demonstrate the feasibility
of and to communicate a practical guide to large-scale train-
ing with distributed synchronous stochastic gradient descent
(SGD). As an example, we scale ResNet-50 [16] train-
ing, originally performed with a minibatch size of 256 im-
ages (using 8 Tesla P100 GPUs, training time is 29 hours),
to larger minibatches (see Figure 1). In particular, we
show that with a large minibatch size of 8192, using 256

GPUs, we can train ResNet-50 in 1 hour while maintain-

1

[Goyal 2017]

W0

Compute the
mean of the Wi

W

W3

W1

W2

Data Parallelism

Fix the bottleneck: suppress the server and perform a all-reduce
collective communication

Strategy available using Horovod+Tensorflow (MPI based)

Worker Worker WorkerWorker

Communication cost per worker is now asymptotically independent
on the number of workers

T(n) = 2α log(p) + 2 n/β (p-1)/p + g . n . (p-1)/p

All-Reduce (model weights)

Data Parallelism
But scaling the batch size also requires adapted learning rate
management to ensure a proper training convergence.

Large-Batch Training for LSTM and Beyond SC ’19, November 17–22, 2019, Denver, CO, USA

The communication volume means the number of parameters trans-
ferred in each message. For deep learning applications, the number
of parameters transferred in each message is equal to the number
of parameters in the gradients (i.e. the number of parameters in the
model). For AlexNet, the model has 61 million parameters and it
requires 1.5 billion operations to process each image. Thus, AlexNet
has a computational intensity of 24.6. For ResNet-50, the model
has 25 million parameters and it requires 7.7 billion operations to
process each image. Thus, ResNet-50 has a computational intensity
of 308. That is the reason why ResNet-50 has a much higher than
scaling efficiency than AlexNet (100.08% vs 76.66%). DATE is well
optimized as it can achieve a good scaling efficiency even the model
has a low computational intensity. The same analysis works for
other models.

6 CONCLUSION
DATE is an auto-tuningmethod equippedwith auto-tuningwarmup,
LR Scaling, LR decay and adaptive LR updating techniques. In prac-
tice, DATE performs well on both RNN applications and CNN ap-
plications. For LSTM applications, we are able to scale the batch
size by a factor of 64× without losing accuracy and without tun-
ing the hyper-parameters. For CNN applications, DATE is able to
keep accuracy constant even as we scale the batch size to 32K, and
we have demonstrated that DATE works uniformly better than
previous large-batch auto-tuning techniques (Figure 1). For four
LSTM applications, while running on the same hardware, DATE
achieves a 5.3× average speedup. We also provide some theoretical
explanations for the key techniques of DATE.

7 ACKNOWLEDGE
JD and YY are supported by the U.S. DOE Office of Science, Office
of Advanced Scientific Computing Research, Applied Mathematics
program under Award Number DE-SC0010200; by DARPA Award
Number HR0011-12- 2-0016, ASPIRE Lab industrial sponsors and
affiliates Intel, Google, HP, Huawei, LGE, Nokia, NVIDIA, Oracle
and Samsung. Other industrial sponsors include Mathworks and
Cray. In addition to ASPIRE sponsors, KK is supported by an auxil-
iary Deep Learning ISRA from Intel. CJH also thank XSEDE and
Nvidia for independent support. We thank CSCS for granting us
access to Piz Daint resources.

10.1

10.2

10.3

10.4

10.5

Figure 10: This figure illustrates the main features of DATE
framework (Sqrt Scaling, LEGW, Roller Coaster, and Dy-
namic). This figure is also a summary of differences among
the baseline, state-of-the-art approach, and the DATE frame-
work. The application is LeNet/MNIST training, which to-
tally needs 30 epochs.

Large-Batch Training for LSTM and Beyond SC ’19, November 17–22, 2019, Denver, CO, USA

The communication volume means the number of parameters trans-
ferred in each message. For deep learning applications, the number
of parameters transferred in each message is equal to the number
of parameters in the gradients (i.e. the number of parameters in the
model). For AlexNet, the model has 61 million parameters and it
requires 1.5 billion operations to process each image. Thus, AlexNet
has a computational intensity of 24.6. For ResNet-50, the model
has 25 million parameters and it requires 7.7 billion operations to
process each image. Thus, ResNet-50 has a computational intensity
of 308. That is the reason why ResNet-50 has a much higher than
scaling efficiency than AlexNet (100.08% vs 76.66%). DATE is well
optimized as it can achieve a good scaling efficiency even the model
has a low computational intensity. The same analysis works for
other models.

6 CONCLUSION
DATE is an auto-tuningmethod equippedwith auto-tuningwarmup,
LR Scaling, LR decay and adaptive LR updating techniques. In prac-
tice, DATE performs well on both RNN applications and CNN ap-
plications. For LSTM applications, we are able to scale the batch
size by a factor of 64× without losing accuracy and without tun-
ing the hyper-parameters. For CNN applications, DATE is able to
keep accuracy constant even as we scale the batch size to 32K, and
we have demonstrated that DATE works uniformly better than
previous large-batch auto-tuning techniques (Figure 1). For four
LSTM applications, while running on the same hardware, DATE
achieves a 5.3× average speedup. We also provide some theoretical
explanations for the key techniques of DATE.

7 ACKNOWLEDGE
JD and YY are supported by the U.S. DOE Office of Science, Office
of Advanced Scientific Computing Research, Applied Mathematics
program under Award Number DE-SC0010200; by DARPA Award
Number HR0011-12- 2-0016, ASPIRE Lab industrial sponsors and
affiliates Intel, Google, HP, Huawei, LGE, Nokia, NVIDIA, Oracle
and Samsung. Other industrial sponsors include Mathworks and
Cray. In addition to ASPIRE sponsors, KK is supported by an auxil-
iary Deep Learning ISRA from Intel. CJH also thank XSEDE and
Nvidia for independent support. We thank CSCS for granting us
access to Piz Daint resources.

10.1

10.2

10.3

10.4

10.5

Figure 10: This figure illustrates the main features of DATE
framework (Sqrt Scaling, LEGW, Roller Coaster, and Dy-
namic). This figure is also a summary of differences among
the baseline, state-of-the-art approach, and the DATE frame-
work. The application is LeNet/MNIST training, which to-
tally needs 30 epochs.

You et al, SC 2019

Warmup

Model Parallelism

Data parallelism limitation: not adapted if the

neural network does not fit into memory

Model parallelism: Internal NN parallelization

– Difficult to acheive (tight data dependencies betwen

neurons)

– 2 main approaches today:

• Layer-wise pipe-lining (ex: Gpipe – Huang et al. 2018)

• Distributed tensor computation (Mesh-TensorFlow – Shazeer

et al. – 2018)

12

Data and Model parallelism can be combined (Megatron - 2019)

https://arxiv.org/abs/1909.08053

https://arxiv.org/abs/1909.08053

Learning From Simulations: Deep Fluid

https://arxiv.org/abs/1806.02071

Neural Network Output (on trained examples)Simulation Output

Train a neural network to reproduce the CFD
simulation output from simulation data
(varying the simulation input parameters)

Neural architecture:
Auto-encoder + Physics-inspired Loss

Kim et al. Eurographics 2019

B. Kim et al. / Deep Fluids: A Generative Network for Parameterized Fluid Simulations

To extend our approach to these challenging scenarios, we add
an encoder architecture G†(u) : RH⇥W⇥D⇥Vdim 7! Rn to our gen-
erator of Section 3, and combine it with a second smaller network
for time integration (Section 4.1), as illustrated in Figure 5. In con-
trast to our generative network, the encoder architecture maps ve-
locity field frames into a parameterization c = [z,p] 2Rn, in which
z 2 Rn�k is a reduced latent space that models arbitrary features
of the flow in an unsupervised way and p 2 Rk is a supervised pa-
rameterization to control specific attributes [KWKT15]. Note that
this separation makes the latent space sparser while training, which
in turn improves the quality of the reconstruction. For the moving
smoke source example in Section 5.2, n = 16 and p encodes x,z
positions used to control the position of the smoke source.

The combined encoder and generative networks are similar to
Deep Convolutional autoencoders [VLL⇤10], where the generative
network G(c) acts as a decoder. The encoding architecture is sym-
metric to our generative model, except that we do not employ the
inverse of the curl operator and the last convolutional layer. We
train both generative and encoding networks with a combined loss
similar to Equation (3), as

LAE(u) = lu||uc� ûc||1+lru||ruc�rûc||1+lp||p� p̂||22, (4)

where p̂ is the part of the latent space vector constrained to rep-
resent control parameters p, and lp is a weight to emphasize the
learning of supervised parameters. Note that the L2 distance is
applied to control parameters unlike vector field outputs, as it is
a standard cost function in linear regression. As before, we used
lu = lru = lp = 1 for all our normalized examples (Section 6.1).
With this approach we can handle complex parameterizations, since
the velocity field states are represented by the remaining latent
space dimensions in z. This allows us to use latent spaces which do
not explicitly encode the time dimension as a parameter. Instead,
we can use a second latent space integration network that generates
a suitable sequence of latent codes.

4.1. Latent Space Integration Network

The latent space only learns a diffuse representation of time by the
velocity field states z. Thus we propose a latent space integration
network for advancing time from reduced representations. The net-
work T (xt) : Rn+k 7! Rn�k takes an input vector xt = [ct ;Dpt] 2
Rn+k which is a concatenation of a latent code ct at current time
t and a control vector difference between user input parameters
Dpt = pt+1�pt 2Rk. The parameter Dpt has the same dimension-
ality k as the supervised part of our latent space, and serves as a
transition guidance from latent code ct to ct+1. The output of T (xt)
is the residual Dzt between two consecutive states. Thus, a new la-
tent code is computed with zt+1 = zt +T (xt) as seen in Figure 5.

For improved accuracy we let T look ahead in time, by training
the network on a window of w sequential latent codes with an L2
loss function:

LT (xt , ...,xt+w�1) =
1
w

t+w�1

Â
i=t

||Dzi�Ti||22, (5)

where Ti is recursively computed from t to i. Our window
loss Equation (5) is designed to minimize not only errors on the
next single step integration but also errors accumulated in repeated

latent space updates. We found that w = 30 yields good results, and
a discussion of the effects of different values of w is provided in the
supplemental material.

We realize T as a multilayer perceptron (MLP) network. The
rationale behind choosing MLP instead of LSTM is that T is de-
signed to be a navigator on the manifold of the latent space, and
we consider these integrations as controlled individual steps rather
than physically induced ones. The network consists of three fully
connected layers coupled with ELU activation functions. We em-
ploy batch normalization and dropout layers with probability of 0.1
to avoid overfitting. Once the networks G,G† and T are trained, we
use Algorithm 1 to reconstruct the velocity field for a new simula-
tion. The algorithm starts from an initial reduced space that can be
computed from an initial incompressible velocity field. The main
loop consists of concatenating the reduced space and the position
update into xt ; then the latent space integration network computes
Dzt , which is used to update ct to ct+1. Finally, the generative net-
work G reconstructs the velocity field ut+1 by evaluating ct+1.

Algorithm 1 Simulation with the Latent Space Integration Network

c0 G†(u0)
while simulating from t to t +1 do

xt [ct ;Dpt] // ct from previous step, p is given
zt+1 zt +T (xt) // latent code inference
ct+1 [zt+1;pt+1]
ut+1 G(ct+1) // velocity field reconstruction

end while

𝒖

𝐜G−1(𝐮) G(𝒄)

𝐩𝒕+𝟏 − 𝐩𝒕 = ∆𝐩𝑡

𝐜𝑡−1

∆𝐩𝑡−1 FC
 1

02
4

FC
 5

12

∆𝐜𝑡−1 𝐜𝑡

ෝ𝒖𝒄

𝐩0 → 𝐩1 → 𝐩2 → ⋯
Control on Fluids

𝐜0 → 𝐜1 → 𝐜2 → ⋯
Integration on latent-space

ෝ𝒖𝒄0 → ෝ𝒖𝒄1 → ෝ𝒖𝒄2 → ⋯
Reconstruction

𝐜 = 𝐳 𝒑

Unsupervised Supervised

Figure 5: Autoencoder (top) and latent space integration network
(bottom). The autoencoder compresses a velocity field u into a la-
tent space representation c, which includes a supervised and unsu-
pervised part (p and z). The latent space integration network finds
mappings from subsequent latent code representations ct and ct+1.

5. Results

In the following we demonstrate that our Deep Fluids CNN can re-
liably recover and synthesize dynamic flow fields for both smoke
and liquids. We refer the reader to the supplemental video for the
corresponding animations. For each scene, we reconstruct velocity
fields computed by the generative network and advect densities for
smoke simulations or surfaces for liquids. Vorticity confinement or

c� 2019 The Author(s)
Computer Graphics Forum c� 2019 The Eurographics Association and John Wiley & Sons Ltd.

B. Kim et al. / Deep Fluids: A Generative Network for Parameterized Fluid Simulations

Figure 2: Ground truth (left) and the CNN-reconstructed results (right) for nine sample simulations with varying buoyancy (rows) and inflow
velocity (columns). Despite the varying dynamics of the ground truth simulations, our trained model closely reconstructs the reference data.

shape design, while Ma et al. [MTP⇤18] have demonstrated deep
learning based fluid interactions with rigid bodies.

Machine Learning & Physics. In the physics community, neu-
ral networks and deep learning architectures for approximating,
enhancing and modeling solutions to complex physics problems
are gaining attention. A few recent examples are [CT17a] us-
ing reinforcement learning to reduce the complexity of a quan-
tum many-body problem, [LKT16] employing deep neural net-
works to synthesize Reynolds average turbulence anisotropy ten-
sors from high-fidelity simulation data, and [PdON18] model-
ing calorimeter interactions with electromagnetic showers using
GANs. GANs have also been employed to generate [RLM⇤17]
and deconvolve [SZZ⇤17] galaxy images, and reconstruct three-
dimensional porous media [MDB17]. As we focus on generative
networks for known parameterizations, we will not employ learned,
adversarial losses. Rather, we will demonstrate that a high quality
representation can be learned by constructing a suitable direct loss
function.

3. A Generative Model For Fluids

Fluids are traditionally simulated by solving the inviscid momen-
tum Du/Dt =�rp+g and mass conservation r ·u = 0 equations,
where u and p are the fluid velocity and pressure, Du/Dt is the
material derivative and g represents external forces. The viscosity
�µr2u can be included, but simulations for visual effects usually
rely on numerical dissipation instead. For a given set of simulated
fluid examples, our goal is to train a CNN that approximates the
original velocity field data set. By minimizing loss functions with
subsequent convolutions applied to its input, CNNs organize the
data manifold into shift-invariant feature maps.

Numerical fluid solvers work by advancing a set of fully speci-
fied initial conditions. By focusing on scenes that are initially pa-
rameterizable by a handful of variables, such as the position of a
smoke source, we are able to generate samples for a chosen class
of simulations. Thus, the inputs for our method are parameterizable
data sets, and we demonstrate that accurate generative networks can
be trained in a supervised way.

Figure 3: Different snapshots showing the advected densities for
varying smoke source parameters. The top and bottom rows show
the variation of the initial position source and width, respectively.

3.1. Loss Function for Velocity Reconstruction

The network’s input is characterized by a pair [uc,c], where uc 2
RH⇥W⇥D⇥Vdim is a single velocity vector field frame in Vdim di-
mensions (i.e. Vdim = 2 for 2-D and Vdim = 3 for 3-D) with height
H, width W and depth D (1 for 2-D), generated using the solver’s
parameters c = [c1,c2, ...,cn] 2 Rn. For the 2-D example in Fig-
ure 3, c is the combination of x-position and width of the smoke
source, and the current time of the frame. Due to the inherent non-
linear nature of the Navier-Stokes equations, these three parameters
(i.e. position, width, and time) yield a vastly different set of velocity
outputs.

For fitting fluid samples, our network uses velocity-parameter
pairs and updates its internal weights by minimizing a loss func-
tion. This process is repeated by random batches until the network
minimizes a loss function over all the training data. While previ-
ous works have proposed loss functions for natural images, e.g.,
Lp norms, MS-SSIM [ZGFK17], and perceptual losses [JAFF16,
LTH⇤17], accurate reconstructions of velocity fields have not been
investigated. For fluid dynamics it is especially important to ensure
conservation of mass, i.e., to ensure divergence-free motion for in-
compressible flows. We therefore propose a novel stream function
based loss function defined as

LG(c) = ||uc �r⇥G(c)||1. (1)

G(c) : Rn 7! RH⇥W⇥D⇥Gdim is the network output and uc is a sim-
ulation sample from the training data. The curl of the model output

c� 2019 The Author(s)
Computer Graphics Forum c� 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://arxiv.org/abs/1806.02071

Neural Surrogates for Massive
Parametric Space Exploration

Taking benefit of the generalization capabilities
of NN:

1) Use classical simulation to generate 105

simulation results from random
combinations of parameter values.

2 months on a 400 node cluster
2) NN training from simulation data (LSTM

arch)
3) Use NN to screen 108 combinations of

parameter values
12 days – instead of 986 year with standard

simulation (NN 30 000x faster)

-> Found novel patterns

Wang et al. 2019, Nature Communication

Mathematical modeling has become increasingly adopted
in analyzing the dynamics of biological systems at
diverse length- and time-scales1–6. In each case, a

model is typically formulated to account for the biological pro-
cesses underlying the system dynamics of interest. When ana-
lyzing a gene circuit, the corresponding model often entails
description of the gene expression; for a metabolic pathway, the
corresponding model may describe the constituent enzymatic
reactions; for an ecosystem, the corresponding model would
describe growth, death, and movement of individual populations,
which could in turn be influenced by other populations. We call
these models mechanism-based models.

Mechanism-based models are useful for testing our under-
standing of the systems of interest7–14. For instance, modeling has
been used to examine of the network motifs or the parameter sets
able to generate oscillations15,16 or spatial patterns17, or the noise
characteristics of signaling networks18–21. They may also serve as
the foundation for practical applications, such as designing
treatments of diseases22–24 and interpreting the pharmacokinetics
of drugs25–27. Many mechanism-based models cannot be solved
analytically and have to be analyzed by numerical methods. This
situation is particularly true for models dealing with spatial or
stochastic dynamics. While numerical simulations are typically
more efficient than experiments, they can still become compu-
tationally prohibitive for certain biological questions. For exam-
ple, consider a model with 10 parameters. To examine six values
per parameter, there will be 610 parameter combinations. If each
simulation takes 5 min, which is typical for a partial differential
equation (PDE) model, the screening would require 575 years to
finish. Many biological systems are much more complex. For each
system, both the size of the parametric space and the time
required to do each simulation would increase combinatorically
with the system complexity. Thus, standard numerical simula-
tions using mechanism-based models can face a prohibitive
barrier for large-scale exploration of system behaviors.

Thanks to its ability to make predictions without a full map-
ping of the mechanistic details, deep learning has been used to
emulate time-consuming model simulations28–31. To date, how-
ever, the predicted outputs are restricted in categorical labels or a
set of discrete values. By contrast, deep learning has not been used
to predict outputs consisting of continuous sequences of data
(e.g., time series, spatial distributions, and probability density
functions). We overcome this limitation by adopting a special
type of deep learning network, the Long-Short-Term Memory
(LSTM) network. For a pattern formation circuit, our approach
leads to ~30,000-fold acceleration in computation with high
prediction accuracy. We further develop a voting strategy, where
multiple neural networks are trained in parallel, to assess and
improve the reliability of predictions.

Results
The conceptual framework. When numerically solving a
mechanism-based dynamic model consisting of differential
equations, the vast majority of the time is spent in the generation
of time courses. For many biological questions, however, the main
objective is to map the input parameters to specific outcomes,
such as the ability to generate oscillations or spatial patterns32–37.
For such applications, the time-consuming generation of time
courses is a necessary evil.

The key to the use of the deep learning is to establish this
mapping through training to bypass the generation of time
courses, leading to a massive acceleration in predictions (Fig. 1).
To do the learning, we use a small proportion of data generated
by the mechanism-based model to train a neural network. The
data generated by the mechanistic model need to be sufficiently

large to ensure reliable training but small enough such that the
data generation is computational feasible.

As a proof of principle, we first apply our approach to a well-
defined model developed by Cao et al.32 This PDE model
describes pattern formation in Escherichia coli programed by a
synthetic gene circuit (Methods and Supplementary Fig. 1a),
accounting for cell growth and movement, intercellular signaling
and circuit dynamics as well as transportation (Eq. 1). This model
was previously used to capture the generation of characteristic
core-ring patterns and to examine the scaling property of
these patterns. Numerical simulations were used to explore the
parametric space to seek parameter combinations able to generate
scale-invariant patterns. Several months were needed to search
through 18,231 parameter sets. Yet, these parameter sets only
represent an extremely tiny fraction of the parametric space that
the system can occupy. Thus, it is likely that these numerical
simulations have not revealed the full capability of the system in
terms of pattern formation. For example, it is unclear whether the
system can generate more than two rings and how this can be
achieved.

For this system, each input is a set of parameters (e.g., cell
growth rate, cell motility, and kinetic parameters associated with
gene expression); the output is the spatial distribution of a
molecule. The mapping between the two is particularly suited for
the use of an LSTM network. The LSTM network, a type of
recurrent neural network (RNN), was proposed in 1997 to
process outputs consisting of a continuous series of data38. It has
demonstrated great potential in natural language processing and
speech recognition as well as in other sequence-prediction
applications39.

The outputs of the model can vary drastically in the absolute
scale. To improve the learning process, we break each output
profile into two components: the peak value of each profile and
the profile normalized with respect to the peak value. Our deep
neural network consists of an input layer with inputs to be the
parameters of mechanism-based model, connected to a fully
connected layer, and the output layer consists of two types of
outputs, one for predicting the logarithm of the peak value of the
profile, directly connected to the fully connected layer, the other

Training & validation

Predictions

Small-scale predictions

Mechanism-based model

slow but manageable

Large-scale predictions
slow or impossible

Training & test data

fast

Neural network

Dynamics

= ki∆xi +

Biological system

∂xi

∂t Σj
kj xi xj + fi(x1 ,x2 ,... xn)∇ ∇

Fig. 1 Using an artificial neural network to emulate a mechanism-based
model. Here a hypothetic biological network and the corresponding
mechanistic model are shown. The mechanistic model is used to generate a
training data set, which is used to train a neural network. Depending on the
specific mechanistic model, the trained neural network can be orders of
magnitude faster, enabling exploration of a much larger parametric space of
the system

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12342-y

2 NATURE COMMUNICATIONS | ��������(2019)�10:4354� | https://doi.org/10.1038/s41467-019-12342-y | www.nature.com/naturecommunications

NN 30000x faster than sim.

Physics-Inspired Neural Networks

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 693

functions using automatic differentiation [12]. It is worth highlighting that the parameters of the differential operator λ turn
into parameters of the physics-informed neural network f (t, x).

4.1.1. Example (Navier–Stokes equation)
Our next example involves a realistic scenario of incompressible fluid flow described by the ubiquitous Navier–Stokes

equations. Navier–Stokes equations describe the physics of many phenomena of scientific and engineering interest. They
may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes
equations in their full and simplified forms help with the design of aircrafts and cars, the study of blood flow, the design of
power stations, the analysis of the dispersion of pollutants, and many other applications. Let us consider the Navier–Stokes
equations in two dimensions2 (2D) given explicitly by

ut + λ1(uux + vu y) = −px + λ2(uxx + u yy),
vt + λ1(uvx + v v y) = −p y + λ2(vxx + v yy),

(15)

where u(t, x, y) denotes the x-component of the velocity field, v(t, x, y) the y-component, and p(t, x, y) the pressure. Here,
λ = (λ1, λ2) are the unknown parameters. Solutions to the Navier–Stokes equations are searched in the set of divergence-free
functions; i.e.,

ux + v y = 0. (16)

This extra equation is the continuity equation for incompressible fluids that describes the conservation of mass of the fluid.
We make the assumption that

u = ψy, v = −ψx, (17)

for some latent function ψ(t, x, y).3 Under this assumption, the continuity equation (16) will be automatically satisfied.
Given noisy measurements

{ti, xi, yi, ui, vi}N
i=1

of the velocity field, we are interested in learning the parameters λ as well as the pressure p(t, x, y). We define f (t, x, y)

and g(t, x, y) to be given by

f := ut + λ1(uux + vu y) + px − λ2(uxx + u yy),
g := vt + λ1(uvx + v v y) + p y − λ2(vxx + v yy),

(18)

and proceed by jointly approximating
[
ψ(t, x, y) p(t, x, y)

]
using a single neural network with two outputs. This prior

assumption along with equations (17) and (18) results into a physics-informed neural network
[

f (t, x, y) g(t, x, y)
]
. The

parameters λ of the Navier–Stokes operator as well as the parameters of the neural networks
[
ψ(t, x, y) p(t, x, y)

]
and [

f (t, x, y) g(t, x, y)
]

can be trained by minimizing the mean squared error loss

M S E := 1
N

N∑

i=1

(
|u(ti, xi, yi) − ui|2 + |v(ti, xi, yi) − vi |2

)
+ 1

N

N∑

i=1

(
| f (ti, xi, yi)|2 + |g(ti, xi, yi)|2

)
. (19)

Here we consider the prototype problem of incompressible flow past a circular cylinder; a problem known to exhibit rich
dynamic behavior and transitions for different regimes of the Reynolds number Re = u∞D/ν . Assuming a non-dimensional
free stream velocity u∞ = 1, cylinder diameter D = 1, and kinematic viscosity ν = 0.01, the system exhibits a periodic
steady state behavior characterized by a asymmetrical vortex shedding pattern in the cylinder wake, known as the Kármán
vortex street [46].

To generate a high-resolution data set for this problem we have employed the spectral/hp-element solver NekTar [47].
Specifically, the solution domain is discretized in space by a tessellation consisting of 412 triangular elements, and within
each element the solution is approximated as a linear combination of a tenth-order hierarchical, semi-orthogonal Jacobi
polynomial expansion [47]. We have assumed a uniform free stream velocity profile imposed at the left boundary, a zero
pressure outflow condition imposed at the right boundary located 25 diameters downstream of the cylinder, and periodicity
for the top and bottom boundaries of the [−15, 25] × [−8, 8] domain. We integrate equation (15) using a third-order stiffly
stable scheme [47] until the system reaches a periodic steady state, as depicted in Fig. 3(a). In what follows, a small portion
of the resulting data-set corresponding to this steady state solution will be used for model training, while the remaining
data will be used to validate our predictions. For simplicity, we have chosen to confine our sampling in a rectangular region
downstream of cylinder as shown in Fig. 3(a).

2 It is straightforward to generalize the proposed framework to the Navier–Stokes equations in three dimensions (3D).
3 This construction can be generalized to three dimensional problems by employing the notion of vector potentials.

Raissi et al, JoCP 2018

694 M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707

Fig. 3. Navier–Stokes equation: Top: Incompressible flow and dynamic vortex shedding past a circular cylinder at Re = 100. The spatio-temporal training data
correspond to the depicted rectangular region in the cylinder wake. Bottom: Locations of training data-points for the stream-wise and transverse velocity
components, u(t, x, y) and v(t, x, t), respectively.

Given scattered and potentially noisy data on the stream-wise u(t, x, y) and transverse v(t, x, y) velocity components,
our goal is to identify the unknown parameters λ1 and λ2, as well as to obtain a qualitatively accurate reconstruction of the
entire pressure field p(t, x, y) in the cylinder wake, which by definition can only be identified up to a constant. To this end,
we have created a training data-set by randomly sub-sampling the full high-resolution data-set. To highlight the ability of
our method to learn from scattered and scarce training data, we have chosen N = 5,000, corresponding to a mere 1% of the
total available data as illustrated in Fig. 3 (b). Also plotted are representative snapshots of the predicted velocity components
u(t, x, y) and v(t, x, y) after the model was trained. The neural network architecture used here consists of 9 layers with 20
neurons in each layer.

A summary of our results for this example is presented in Fig. 4. We observe that the physics-informed neural network
is able to correctly identify the unknown parameters λ1 and λ2 with very high accuracy even when the training data was
corrupted with noise. Specifically, for the case of noise-free training data, the error in estimating λ1 and λ2 is 0.078%, and
4.67%, respectively. The predictions remain robust even when the training data are corrupted with 1% uncorrelated Gaussian
noise, returning an error of 0.17%, and 5.70%, for λ1 and λ2, respectively.

A more intriguing result stems from the network’s ability to provide a qualitatively accurate prediction of the entire
pressure field p(t, x, y) in the absence of any training data on the pressure itself. A visual comparison against the exact
pressure solution is presented in Fig. 4 for a representative pressure snapshot. Notice that the difference in magnitude
between the exact and the predicted pressure is justified by the very nature of the incompressible Navier–Stokes system, as
the pressure field is only identifiable up to a constant. This result of inferring a continuous quantity of interest from auxiliary
measurements by leveraging the underlying physics is a great example of the enhanced capabilities that physics-informed
neural networks have to offer, and highlights their potential in solving high-dimensional inverse problems.

Our approach so far assumes availability of scattered data throughout the entire spatio-temporal domain. However, in
many cases of practical interest, one may only be able to observe the system at distinct time instants. In the next section,
we introduce a different approach that tackles the data-driven discovery problem using only two data snapshots. We will
see how, by leveraging the classical Runge–Kutta time-stepping schemes, one can construct discrete time physics-informed
neural networks that can retain high predictive accuracy even when the temporal gap between the data snapshots is very
large.

4.2. Discrete time models

We begin by applying the general form of Runge–Kutta methods [45] with q stages to equation (1) and obtain

un+ci = un − "t
∑q

j= 1 aijN [un+c j ;λ], i = 1, . . . ,q,

un+1 = un − "t
∑q

j= 1 b jN [un+c j ;λ]. (20)

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 693

functions using automatic differentiation [12]. It is worth highlighting that the parameters of the differential operator λ turn
into parameters of the physics-informed neural network f (t, x).

4.1.1. Example (Navier–Stokes equation)
Our next example involves a realistic scenario of incompressible fluid flow described by the ubiquitous Navier–Stokes

equations. Navier–Stokes equations describe the physics of many phenomena of scientific and engineering interest. They
may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes
equations in their full and simplified forms help with the design of aircrafts and cars, the study of blood flow, the design of
power stations, the analysis of the dispersion of pollutants, and many other applications. Let us consider the Navier–Stokes
equations in two dimensions2 (2D) given explicitly by

ut + λ1(uux + vu y) = −px + λ2(uxx + u yy),
vt + λ1(uvx + v v y) = −p y + λ2(vxx + v yy),

(15)

where u(t, x, y) denotes the x-component of the velocity field, v(t, x, y) the y-component, and p(t, x, y) the pressure. Here,
λ = (λ1, λ2) are the unknown parameters. Solutions to the Navier–Stokes equations are searched in the set of divergence-free
functions; i.e.,

ux + v y = 0. (16)

This extra equation is the continuity equation for incompressible fluids that describes the conservation of mass of the fluid.
We make the assumption that

u = ψy, v = −ψx, (17)

for some latent function ψ(t, x, y).3 Under this assumption, the continuity equation (16) will be automatically satisfied.
Given noisy measurements

{ti, xi, yi, ui, vi}N
i=1

of the velocity field, we are interested in learning the parameters λ as well as the pressure p(t, x, y). We define f (t, x, y)

and g(t, x, y) to be given by

f := ut + λ1(uux + vu y) + px − λ2(uxx + u yy),
g := vt + λ1(uvx + v v y) + p y − λ2(vxx + v yy),

(18)

and proceed by jointly approximating
[
ψ(t, x, y) p(t, x, y)

]
using a single neural network with two outputs. This prior

assumption along with equations (17) and (18) results into a physics-informed neural network
[

f (t, x, y) g(t, x, y)
]
. The

parameters λ of the Navier–Stokes operator as well as the parameters of the neural networks
[
ψ(t, x, y) p(t, x, y)

]
and [

f (t, x, y) g(t, x, y)
]

can be trained by minimizing the mean squared error loss

M S E := 1
N

N∑

i=1

(
|u(ti, xi, yi) − ui|2 + |v(ti, xi, yi) − vi |2

)
+ 1

N

N∑

i=1

(
| f (ti, xi, yi)|2 + |g(ti, xi, yi)|2

)
. (19)

Here we consider the prototype problem of incompressible flow past a circular cylinder; a problem known to exhibit rich
dynamic behavior and transitions for different regimes of the Reynolds number Re = u∞D/ν . Assuming a non-dimensional
free stream velocity u∞ = 1, cylinder diameter D = 1, and kinematic viscosity ν = 0.01, the system exhibits a periodic
steady state behavior characterized by a asymmetrical vortex shedding pattern in the cylinder wake, known as the Kármán
vortex street [46].

To generate a high-resolution data set for this problem we have employed the spectral/hp-element solver NekTar [47].
Specifically, the solution domain is discretized in space by a tessellation consisting of 412 triangular elements, and within
each element the solution is approximated as a linear combination of a tenth-order hierarchical, semi-orthogonal Jacobi
polynomial expansion [47]. We have assumed a uniform free stream velocity profile imposed at the left boundary, a zero
pressure outflow condition imposed at the right boundary located 25 diameters downstream of the cylinder, and periodicity
for the top and bottom boundaries of the [−15, 25] × [−8, 8] domain. We integrate equation (15) using a third-order stiffly
stable scheme [47] until the system reaches a periodic steady state, as depicted in Fig. 3(a). In what follows, a small portion
of the resulting data-set corresponding to this steady state solution will be used for model training, while the remaining
data will be used to validate our predictions. For simplicity, we have chosen to confine our sampling in a rectangular region
downstream of cylinder as shown in Fig. 3(a).

2 It is straightforward to generalize the proposed framework to the Navier–Stokes equations in three dimensions (3D).
3 This construction can be generalized to three dimensional problems by employing the notion of vector potentials.

M. Raissi et al. / Journal of Computational Physics 378 (2019) 686–707 693

functions using automatic differentiation [12]. It is worth highlighting that the parameters of the differential operator λ turn
into parameters of the physics-informed neural network f (t, x).

4.1.1. Example (Navier–Stokes equation)
Our next example involves a realistic scenario of incompressible fluid flow described by the ubiquitous Navier–Stokes

equations. Navier–Stokes equations describe the physics of many phenomena of scientific and engineering interest. They
may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes
equations in their full and simplified forms help with the design of aircrafts and cars, the study of blood flow, the design of
power stations, the analysis of the dispersion of pollutants, and many other applications. Let us consider the Navier–Stokes
equations in two dimensions2 (2D) given explicitly by

ut + λ1(uux + vu y) = −px + λ2(uxx + u yy),
vt + λ1(uvx + v v y) = −p y + λ2(vxx + v yy),

(15)

where u(t, x, y) denotes the x-component of the velocity field, v(t, x, y) the y-component, and p(t, x, y) the pressure. Here,
λ = (λ1, λ2) are the unknown parameters. Solutions to the Navier–Stokes equations are searched in the set of divergence-free
functions; i.e.,

ux + v y = 0. (16)

This extra equation is the continuity equation for incompressible fluids that describes the conservation of mass of the fluid.
We make the assumption that

u = ψy, v = −ψx, (17)

for some latent function ψ(t, x, y).3 Under this assumption, the continuity equation (16) will be automatically satisfied.
Given noisy measurements

{ti, xi, yi, ui, vi}N
i=1

of the velocity field, we are interested in learning the parameters λ as well as the pressure p(t, x, y). We define f (t, x, y)

and g(t, x, y) to be given by

f := ut + λ1(uux + vu y) + px − λ2(uxx + u yy),
g := vt + λ1(uvx + v v y) + p y − λ2(vxx + v yy),

(18)

and proceed by jointly approximating
[
ψ(t, x, y) p(t, x, y)

]
using a single neural network with two outputs. This prior

assumption along with equations (17) and (18) results into a physics-informed neural network
[

f (t, x, y) g(t, x, y)
]
. The

parameters λ of the Navier–Stokes operator as well as the parameters of the neural networks
[
ψ(t, x, y) p(t, x, y)

]
and [

f (t, x, y) g(t, x, y)
]

can be trained by minimizing the mean squared error loss

M S E := 1
N

N∑

i=1

(
|u(ti, xi, yi) − ui|2 + |v(ti, xi, yi) − vi |2

)
+ 1

N

N∑

i=1

(
| f (ti, xi, yi)|2 + |g(ti, xi, yi)|2

)
. (19)

Here we consider the prototype problem of incompressible flow past a circular cylinder; a problem known to exhibit rich
dynamic behavior and transitions for different regimes of the Reynolds number Re = u∞D/ν . Assuming a non-dimensional
free stream velocity u∞ = 1, cylinder diameter D = 1, and kinematic viscosity ν = 0.01, the system exhibits a periodic
steady state behavior characterized by a asymmetrical vortex shedding pattern in the cylinder wake, known as the Kármán
vortex street [46].

To generate a high-resolution data set for this problem we have employed the spectral/hp-element solver NekTar [47].
Specifically, the solution domain is discretized in space by a tessellation consisting of 412 triangular elements, and within
each element the solution is approximated as a linear combination of a tenth-order hierarchical, semi-orthogonal Jacobi
polynomial expansion [47]. We have assumed a uniform free stream velocity profile imposed at the left boundary, a zero
pressure outflow condition imposed at the right boundary located 25 diameters downstream of the cylinder, and periodicity
for the top and bottom boundaries of the [−15, 25] × [−8, 8] domain. We integrate equation (15) using a third-order stiffly
stable scheme [47] until the system reaches a periodic steady state, as depicted in Fig. 3(a). In what follows, a small portion
of the resulting data-set corresponding to this steady state solution will be used for model training, while the remaining
data will be used to validate our predictions. For simplicity, we have chosen to confine our sampling in a rectangular region
downstream of cylinder as shown in Fig. 3(a).

2 It is straightforward to generalize the proposed framework to the Navier–Stokes equations in three dimensions (3D).
3 This construction can be generalized to three dimensional problems by employing the notion of vector potentials.

2D Navier-Stokes equations:

u,v: velocity fields
p: pressure

Learn pressure field, Delta 1 and Delta 2

Training domain

Neural network with loss function
Enforcing physics constraints:

Classical loss Navier-Stokes

Differentiable Programming

Automatic differentiation:
– Initially developed to produce adjoint code

automatically
– Generalized backpropagation algorithm
– Supported by standard libs like PyTorch and

TensorFlow.

From (static) neural network programming to
differential programming (dynamic deep
architectures).

Myia language

Baydin et al. 2018

Baydin, Pearlmutter, Radul, and Siskind

!a) Forward pass

x!

x2

E!y3$ t)

y2

@E=@y2

!b) Backward pass

w4

@E=@w4

w!

@E=@w!

w2

w3

y!

y3

@E=@y3

w5

w6

@E=@w6

@E=@E
@E=@w3

@E=@y!
@E=@w5

@E=@w2

Figure 1: Overview of backpropagation. (a) Training inputs xi are fed forward, generating
corresponding activations yi. An error E between the actual output y3 and the
target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights ∇wi
E =

(

∂E
∂w1

, . . . , ∂E
∂w6

)

, which is

subsequently used in a gradient-descent procedure. The gradient with respect to
inputs ∇xi

E can be also computed in the same backward pass.

2.1 AD Is Not Numerical Differentiation

Numerical differentiation is the finite difference approximation of derivatives using values of
the original function evaluated at some sample points (Burden and Faires, 2001) (Figure 2,
lower right). In its simplest form, it is based on the limit definition of a derivative. For
example, for a multivariate function f : Rn → R, one can approximate the gradient ∇f =
(

∂f
∂x1

, . . . , ∂f
∂xn

)

using

∂f(x)

∂xi
≈

f(x+ hei)− f(x)

h
, (1)

where ei is the i-th unit vector and h > 0 is a small step size. This has the advantage of
being uncomplicated to implement, but the disadvantages of performing O(n) evaluations
of f for a gradient in n dimensions and requiring careful consideration in selecting the step
size h.

Numerical approximations of derivatives are inherently ill-conditioned and unstable,5

with the exception of complex variable methods that are applicable to a limited set of
holomorphic functions (Fornberg, 1981). This is due to the introduction of truncation6 and

5. Using the limit definition of the derivative for finite difference approximation commits both cardinal sins
of numerical analysis: “thou shalt not add small numbers to big numbers”, and “thou shalt not subtract

numbers which are approximately equal”.
6. Truncation error is the error of approximation, or inaccuracy, one gets from h not actually being zero.

It is proportional to a power of h.

4

Automatic Differentiation in Machine Learning: a Survey

l1 = x
ln+1 = 4ln(1− ln)

f(x) = l4 = 64x(1−x)(1−2x)2(1−8x+8x2)2

f ′(x) = 128x(1− x)(−8 + 16x)(1 − 2x)2(1 −
8x+8x2)+64(1−x)(1−2x)2(1−8x+8x2)2−
64x(1− 2x)2(1− 8x+8x2)2− 256x(1−x)(1−
2x)(1− 8x+ 8x2)2

f(x):
v = x
for i = 1 to 3
v = 4*v*(1 - v)

return v

or, in closed-form,

f(x):
return 64*x*(1-x)*((1-2*x)^2)
*(1-8*x+8*x*x)^2

f’(x):
return 128*x*(1 - x)*(-8 + 16*x)
*((1 - 2*x)^2)*(1 - 8*x + 8*x*x)
+ 64*(1 - x)*((1 - 2*x)^2)*((1
- 8*x + 8*x*x)^2) - (64*x*(1 -
2*x)^2)*(1 - 8*x + 8*x*x)^2 -
256*x*(1 - x)*(1 - 2*x)*(1 - 8*x
+ 8*x*x)^2

f’(x0) = f ′(x0)
Exact

f’(x):
(v,dv) = (x,1)
for i = 1 to 3
(v,dv) = (4*v*(1-v), 4*dv-8*v*dv)

return (v,dv)

f’(x0) = f ′(x0)
Exact

f’(x):
h = 0.000001
return (f(x + h) - f(x)) / h

f’(x0) ≈ f ′(x0)
Approximate

Manual
Differentiation

Symbolic
Differentiation

of the Closed-form

Coding Coding

Numerical
Differentiation

Automatic
Differentiation

Figure 2: The range of approaches for differentiating mathematical expressions and com-
puter code, looking at the example of a truncated logistic map (upper left). Sym-
bolic differentiation (center right) gives exact results but requires closed-form in-
put and suffers from expression swell; numerical differentiation (lower right) has
problems of accuracy due to round-off and truncation errors; automatic differen-
tiation (lower left) is as accurate as symbolic differentiation with only a constant
factor of overhead and support for control flow.

5

Memory, automatic differentiation and checkpointing:
– Store versus recompute intermediate states required for

the backward pass
– Use checkpointing approaches to control the amount of

memory required
Beaumont et al, 2019, PTRSA.

Deep Reinforcement Learning

Learner
(Deep Neural Network)

Actor Actor Actor

Game Simulator + DNN

Periodically
update NN
weights

(S,S’,api,r):
- S & S’: states
- Pi: Policy
- api : action taken

according to policy Pi.
- r: reward

(S,S’,api,r)

AlphaGo Zero: trained during more than 70
hours using 64 GPU workers and 19 CPU
parameter servers [D. Silver, Nature 2017]

Some recent strategies for DRL: A3C, Impala
Framework for DRL: Ray Lib

Actor-Critic Schematic Architecture

Auto Deep Learning
Hyperparameters:

• Every other NN architecture parameter not computed by the backpropagation
• Today hyperparam. setting is mainly expert based
• AutoML: towards automatic hyperparameter setting

AutoML main approaches:
• Reinforcement Learning
• Genetic algorithms

See the RayTune lib for instance

And of course very compute intensive embarrassingly parallel
workload (and people start to question carbon impact)

https://autodl.chalearn.org/

https://autodl.chalearn.org/

Conclusion
• HPC-for-AI:

– Massive parallelism not yet common (but quickly changing domain). Day
long trainings are commons. Design/test/share/reproduce (MLFlow)

– Accelerators needed - GPUs (gammer cards do the job), TPUs….
– Complexity is growing (NN architectures as well as NN assemblies like GAN,

DRL).
– AutoML (with transfert learning): towards ML factories ?

• AI-for-Science: a way to bring closer data and simulation
– Massive data analytics
– Integration of observation data into numerical simulations (data

assimilation)
– Physics-Inspired NN: ODE/PDE integration with NN + automatic

differentiation

Reference Books
A classic about deep learning:

Deep Neural Networks, Ian Goodfellow and
Yoshua Bengio and Aaron Courville

A classical about machine learning:
Pattern Recognition and Machine Learning,
Christopher Bishop

24

